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Abstract 
Extremely preterm infants, born with a gestational age of under 28 weeks, have underdeveloped 
respiratory systems and almost all require mechanical ventilation during their first days after birth 
[2]. However, the time at which the babies are extubated is critical, as removing the tube too soon 
ultimately leads to re-intubation which itself is associated with complications. On the other hand, 
prolonged MV is also associated with negative effects, risking permanent respiratory damage. The 
overall goal is to build a program, APEX, capable of collecting cardiorespiratory as well as clinical 
data and analyzing the signals using machine learning methods to predict extubation readiness.  Our 
ECSE 456 project focuses on the analysis of heart rate and has for objectives to implement a noise-
robust algorithm to detect the heart rate from ECG signals and provide a package for heart rate 
variability analysis. In this work, we developed a noise-robust, fully functional pipeline on MATLAB 
which takes as input any .mat electrocardiogram signal and outputs its heart rate. We tested our 
software on data collected by the APEX research team, as well as on annotated datasets, for which 
we obtained results of 95.92% Sensitivity, 99.91% Positive Predictivity and 95.83% Accuracy. Our 
entire source code has been open sourced on Github.  

 

 

List of abbreviations: 

- NICU: Neonatal Intensive Care Unit 

- MV: Mechanical Ventilation 

- GA: Gestational Age 

- BPD: Bronchopulmonary Dysplasia 

- APEX: Automated Predictor of Extubation Readiness 

- ECG: Electrocardiogram 

- HR: Heart Rate 

- HRV: Heart Rate Variability 

- IBI: Inter-Beat Interval 

- BPM: Beats Per Minute 

- P&T: Pan and Tompkins 

- GUI: Graphical User Interface 

- MAD: Median Absolute Deviation 

- HRVAS: Heart Rate Variability Analysis Software 
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1 Introduction/Motivations 
1.1 Preterm Infants & MV 

Approximately 15,000 infants are admitted to neonatal intensive care units (NICU) in Canada each 
year, 11% of these infants are extremely preterm (≤ 28 weeks gestational age). Of the infants born 
with gestational age (GA) of 24 and 25 weeks, 99% and 95% respectively require mechanical 
ventilation (MV) [3]. Mechanical ventilation consists of a tube inserted in the trachea and a ventilator. 
The ventilator simulates natural airflow in order to provide air for the lungs, as shown in Figure 1. 
Although MV is lifesaving at first, prolonged MV has been correlated with numerous negative effects, 
including airway trauma, ventilator associated pneumonia, and bronchopulmonary dysplasia 
(BPD)[4]. BDP is the most serious morbidity as it is has been associated with long term respiratory 
damage and neurodevelopment impairment [5] and an important socio-economic burden [6].  The 
duration of MV strongly correlates with BPD risk; each additional week increases the odds of BDP by 
a factor of 2.7 [7]. For these reasons, clinicians attempt to minimize the length of MV as much as 
possible. However, extubating infants before they are ready is also harmful, as it leads to lung 
derecruitment and muscle fatigue, and ultimately reintubation. This is risky, as a recent study has 
shown that 40% of intubation were associated with adverse outcomes, such as injury to the upper 
airway and infection [8]. Extubation failure, defined as the need for reintubation, is the outcome for 
almost 50% of preterm infants requiring MV. As both prolonged MV and the need for reintubation 
are correlated with short and long-term damages, the overall goal is to reduce the time of MV while 
maximizing the chance of extubation success. 

Figure 1: Schematic of endotracheal intubation. Mechanical ventilation involves inserting  

a tube down the patient’s trachea to maintain adequate oxygenation and gas exchange. [9] 

 
Sections 1 to 5.1 are heavily based on material presented in last semester's report. We invite the 
interested reader to refer to it for further details on these sections. [10] 

 

1.2 Current Procedures 

The current procedures for determining extubation readiness are usually based on clinical 
judgement: personal experience and bedside observations of blood gases, oxygen requirements and 
ventilator settings [11]. There are significant practice variations as they are clinician-based instead 
of evidence based.  
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Figure 3: Electrocardiogram of a heartbeat, with the 3 main 

events (peaks): the P wave, the QRS complex, and the T wave. [1] 

 

1.3 APEX 

The overall goal of the project is to build a 
program, Automated Predictor of Extubation 
Readiness (APEX), to acquire 
cardiorespiratory and clinical data, and to 
perform data analysis using machine 
learning methods to predict extubation 
readiness.  

A diagram of the process flow is shown in 
Figure 2. Cardiorespiratory data includes 
heart rate data, respiratory signals and pulse 
oximeter data. APEX will then classify the 
infants in three groups: success, failure, and 
uncertain.  

 

1.4 Our focus 

The task that we are focused on in this overall project is the heart rate data. The goal of our project 
is to build a noise-robust algorithm capable of detecting the heart rate from electrocardiograms 
(ECG) signals of infants, to determine potential metrics to assess heart rate variability, and finally to 
evaluate those metrics as predictors for extubation readiness.  

2 Background 
2.1 Electrocardiograms 

Electrocardiograms are a measure of the heart’s electrical activity. As electrodes are placed on the 
patient’s body, ECGs represent the depolarization and repolarization of the heart as it contracts to 
pump blood for the body. Three main events can be distinguished in a heartbeat: the P wave, the QRS 
complex (also called R wave), and the T wave, as shown in Figure 3 [12]. Due to their lower amplitude 
and lower signal to noise ratio (SNR), the detection of the P and T waves has not been as extensively 
investigated as the R peak. Our study therefore concentrates on detecting the R wave of ECG infants.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Representation of the APEX program, which collects 

cardiorespiratory and clinical data, analyzes them, and predicts 

extubation readiness. 
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RR Interval 

2.2 Tachogram and Heart Rate Variability 
 

 

The collection of electrocardiogram signals is done 
by sampling the electrical potential between 
electrodes on the patient’s chest at a frequency fs. 
The RR interval, or inter-beat interval (IBI), refers 
to the time interval between two successive R-
peaks as a function of sample number. It is 
calculated as follows: 
 
𝑡𝑖𝑚𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑛] = 𝑅𝑡𝑖𝑚𝑒_𝑠𝑖𝑔[𝑛 + 1] − 𝑅𝑡𝑖𝑚𝑒_𝑠𝑖𝑔[𝑛] , (1) 

 
where Rtime_𝑠𝑖𝑔[𝑛] corresponds to the time at 
the R_peak location at sample n.  The time interval 
can be computed up to 𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑖𝑔) − 1. 
The discrete heart rate (in beats per minute, or 

BPM) is calculated as follows: 

           ℎ𝑒𝑎𝑟𝑡𝑅𝑎𝑡𝑒[𝑛] = 60 ∗
𝑓𝑠

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑛]
    (2) 

 
The tachogram corresponds to the continuous heart rate as a function of time, and it is thus 
inversely proportional to the RR interval (usually in milliseconds). An example of tachogram 
is shown in Figure 5. Here continuous refers to the fact that this is a signal with the same 
sampling frequency as the original collected signal. It is calculated by interpolating the heart 
rate values for all time points.  
 
 We used two main methods for interpolation: 

• Linear interpolation:  the values at each point are based on a linear interpolation of 
the values at the neighboring points in both directions. 

• Spline interpolation: the values at each point are based on a cubic interpolation of 
the values at the neighboring points in both directions. 
 

The heart rate ranges from approximately 100 to 200 bpm for infants. Heart rate varies often. 
Changes includes low heart rates ( 100 bpm), called bradycardia, and high heart rates ( 
200 bpm), called tachycardia, both illustrated in Figure 4. Heart rate variability (HRV) refers 
to variations of the RR-interval, that cannot always be seen in the tachogram. Metrics are 
used to quantify heart rate variability, which can be measured in different ways:  
 

• Time domain: various time domain measures and statistical analyses can be 
conducted on the heart rate signal. Some examples are listed below [13](NN refers to 
the interval between two waves of the same type, such as RR):  

o Mean NN: The mean of all NN intervals 
o SDNN: Standard deviation of all NN intervals 
o RMSSD: The square root of the mean of the sum of the squares of differences 

between adjacent NN intervals 

Figure 4: Heart rate comparing normal behavior and 

abnormal behavior (bradycardia and tachycardia), and 

their respective ranges in beats per minute. 
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o SDNNi: Mean of the standard deviations of all NN intervals differing by more 
than 50 ms in the entire recording 

o NNx: Number of pairs of adjacent NN intervals differing by more than x ms in 
the entire recording 

o pNNx: NNx count divided by the total number of NN intervals 
 

• Frequency domain: A times series is often visualized as a set of discrete values as a 
function of time. However, the Fourier transform allows us to visualize the signal as 
a spectrum: the amplitude as a function of frequency. [13] Under appropriate 
conditions, this transform, and its inverse do not destroy information. The frequency 
domain analysis uses the tachogram as it needs a signal with a high sampling 
frequency to be effective. Some examples include: 

o VLF: Power in VLF range (f  0.04 Hz) 
o LF: Power in LF range (0.04  f   0.15 Hz) 
o HF: Power in HF range (0.15 Hz  f  0.04 Hz) 

 

 
Figure 5: Example of a tachogram (heart rate) of an infant in beats per minute (bpm). 

 

2.3 Noise 

Detecting the heart rate for preterm infants is significantly more difficult than for adults as the ECGs 
recorded in the NICU medical beds carry large amounts of noise from various sources. Common 
problems in NICUs consist of baseline drifts (see Figure 6a), and weak signals (b). In Figure 6b, the R 
peak is nearly the size of P-waves and large T-waves, adding a challenge for the detection of the R-
peak. Cases of episodic noise may also occur, due to electrodes falling off (Figure 6c), phone 
interferences (d), handling of the baby (e), and other random noise (f).  

 

 

 

 

 

 

 
 

(a) (b) 
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Figure 6: Examples of different sources of noise. Constant issues include as a) baseline drift and b) weak R peak.  

Intermittent sources include c) electrode falling off, d) phone interference, e) handling of the baby and f) other random noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Handling missing and noisy data 

It is rarely possible to obtain a recording with no noise or ectopic beats. Ectopic beats are 
occasional disturbances in the heart rate seen characterized by a missed or extra beat. While 
these noisy events can be excluded from the time domain analyses, they can introduce large 
artefacts in frequency analysis methods. Indeed, the missing discrete heart rate impulses 
correspond to broad-band noise in the frequency domain. 
Various approaches can be used to deal with erroneous or missing data. The simplest one 
being to simply delete these periods and concatenate surrounding data. Long-term 
correlations in the time series can however be disturbed by this approach in the frequency 
domain. 
Another method is to interpolate the signal at the noisy points based on the neighboring 
clean data. Different interpolation methods can be used such as spline or cubic interpolation.  
Some frequency domain analyses are also particularly suited for analyzing unevenly spaced 
measurements. In this way, no interpolation or deletion of time periods is made. The Lomb 
periodogram for example, allows for analysis even when there are very large gaps in the 
signal [14]. 

3 Requirements  
3.1 Constraints 

Since 2013, a study is being run in five tertiary level NICUs in North America [2]. The ECG 
signals from 250 extremely preterm infants were collected for 1 hour prior to extubation. 
The extubation outcome is recorded after 72h, then again after 14 days. We therefore have 
access to a labelled dataset with, for each recording, the outcome of the extubation. The final 
goal is to build an algorithm capable of estimating the probability of extubation success from 

(c) (d) 

(e) (f) 
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the raw ECG recording. The raw ECG recording is composed of 1 hour of monitoring with 
normal ventilator settings, followed by 10 minutes of SBT (Spontaneous Breathing Trial). 
This is a phase in which the ventilator settings are turned to minimal to see how the infants 
react when needing to breath on their own. The algorithm should output a probability of 
extubation success, along with a measure of confidence. To ensure that it is useful to the rest 
of the research team and can be reused and integrated into other projects, documentation 
should be as extensive as possible and easily accessible.  

3.2 Previous Semester Accomplishments 

Last semester, we built an algorithm capable of detecting the heart rate from the raw ECG 
data, to recover as much data as possible from the signal while removing or correcting 
erroneous values. We initially validated our function. manually by inspecting the tachogram 
visually.  

3.3 Current Semester Goals 

The goal of this semester was to build a fully functional pipeline, usable by the APEX team. 
The pipeline should take in the raw recording file from the APEX database, process the 
signal with the toolkit built last semester and compute time and frequency domain metrics 
for heart rate variability. To be usable, the pipeline needs to be tested and validated, and 
the impact of the various filters on the final signal should be measured.  

4 Heart Rate Detection 
4.1 Algorithm 

The function steps are shown in the figure below.  

 

 
Figure 7: Fully functional pipeline steps, from detection of beats (1-4), to post-processing stages (5-6), and output evaluation 

and generation. 

1. Removing 
Noise

•Detrending

•Lowpass

•Highpass

2. Enhancing 
Signal

•Derivative filter

•Rectifying

•Moving Average

3. Identifying 
Cardiac Cycles

• Hilbert Transform

• Instantaneous 
Phase

4. Identifying 
Peaks

•Maxima in 
each cycle

5. Identifying 
Incorrect Peaks

•Ensemble Filter

•MAD Filter

•Missed Beat 
Detection

6. Tachogram 
Processing

• Median Filter

• Smoothing  
Spline

7. Evaluation

• Number of 
beats removed 
per filter

8. Output

• Final Tachogram
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Steps 1-4:  

Raw ECG 

The algorithm takes as an input the raw 
ECG signal, as shown in Figure 8, as well as 
its sampling frequency. In our case, the 
sampling frequency is always 1000 Hz. 
 

Removing Amplitude Variations 

We first iterate over the signal and for each 1 
second period, we remove the mean from 
each data point divide each point by the 
standard deviation of the signal in that 
second. This allows us to have comparable 
values throughout the signal, independent of 
amplitude modulations, as shown in Figure 9. 
The next step in the process is to remove as 
much noise as possible. This is done by using 

bandpass filters. We used the same filters as in the Kota algorithm: A High-Pass filter with a 
frequency cut-off of 16 Hz, to remove baseline wander and a Low-Pass filter with a frequency 
cut-off of 26 Hz to remove high frequency noise. 
 

Enhancing the signal 

To enhance the QRS complex, the 
difference between successive samples 
of the signal is taken. This is similar to a 
high-pass filter and allows us to 
enhance the characteristic shape of the 
R-Peak. We then rectify the signal by 
setting the negative data points to 0, as 
shown in Figure 10. 
We then compute a 150ms running 
average of the rectified data. At this 
stage, the signal shows clear peaks 
centered on the QRS complex of the 
original ECG. 
 

Figure 8: Sample of a raw ECG signal 

Figure 9: Processed ECG Signal 

Figure 10: Rectified Signal 
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Identifying Cardiac Cycles 

Up to this point, the algorithm is like 
Pan & Tompkins. Their algorithm 
would now try find peaks directly. 
However, this is sensitive to changes 
in amplitude, as explained in section 
5.2.1. Instead, we first identify the 
cardiac cycles using the Hilbert 
Transform. The Hilbert transform, 
calculated for a function f(t) as the 

convolution:
1

𝜋𝑡
 ∗  f(t). It allows us to 

compute the instantaneous phase of 
the signal, as shown in Figure 11. The 
Hilbert transform can be more easily 
represented in the frequency domain: 
it imparts a phase shift of 90° to every 
Fourier component of a function [15]. 

 

Previous research has shown that the instantaneous phase of the signal exhibits phase slips 
when the signal passes through a minimum. Since the processed signal shows clears minima 
between each R-Peak, we can find the minima to determine the onset and end of the cardiac 
cycle, as shown in Figure 11 [16]. 
 

Finding the R-Peaks 

Once we know the beginning and end of 
cardiac cycles, we simply look for the point 
with the maximum amplitude in each cycle. 
In their paper, Kota & Al look for peaks 
directly in the raw signal. This enables 
them to avoid any latencies introduced by 
the filter stages. During our validation (see 
section 6), we found that we had better 
results in searching for peaks in the 
normalized signal. This has the advantage 
of not introducing any latencies, compared 
to other filtering techniques, while 
reducing the susceptibility to noise. The 
ECG with marked beaks is shown in Figure 
12. 

 

 

 

 

Figure 11: Instantaneous Phase of the Signal 

Figure 12: Raw ECG with marked beats 
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Step 5: Identifying Incorrect Peaks 
 
After the heart rate detection algorithm, three different beat processing functions are used 
to flag peaks deemed invalid, which are not interpolated for the extraction of the tachogram.  
 
The Ensemble Filter computes the static correlation of each heart beat with respect to the 
average heartbeat over the entire ECG signal. This function is used for continuous parts of 
the signal that do not correlate with the average heartbeat. The correlation coefficient is 
computed between the 𝑄𝑅𝑆 (QRS centered at a given heartbeat 𝑖) and the 𝐴𝑣𝑔𝑄𝑅𝑆 (average 
QRS of the whole signal), such that:  
 

𝜌(𝑄𝑅𝑆, 𝐴𝑣𝑔_𝑄𝑅𝑆) =  
1

𝑁−1
∑ (

𝑄𝑅𝑆𝑘−𝜇𝑄𝑅𝑆

𝜎𝑄𝑅𝑆
) (

𝐴𝑣𝑔_𝑄𝑅𝑆𝑘−𝜇𝐴𝑣𝑔_𝑄𝑅𝑆

𝜎𝐴𝑣𝑔_𝑄𝑅𝑆
)𝑁

𝑘=1  ,    (3) 

where 𝜇𝑄𝑅𝑆  and 𝜎𝑄𝑅𝑆 are the mean and standard deviation of the 𝑖th QRS signal, and  𝜇𝐴𝑣𝑔_𝑄𝑅𝑆 

and 𝜎𝐴𝑣𝑔_𝑄𝑅𝑆 are the mean and standard deviation of the average QRS signal [17]. The 

minimum static correlation ranges from 0 (low correlation) to 1 (high correlation). 

 
The MAD function, or Median Absolute Deviation, computes the statistical dispersion of the 
signal. It is used to eliminate the extreme outliers, often with random and sudden occurrence. 
The following equation is computed:  

𝐷(𝑛) =  
|𝑥(𝑛)− 𝑥𝑚|

1.483𝑚𝑒𝑑{|𝑥(𝑛)− 𝑥𝑚|}
 ,     (4) 

where 𝑥𝑚 is the median value over the entire record, 𝑥𝑚 = 𝑚𝑒𝑑{𝑥(𝑛)} [18].  

A threshold 𝝉 is used such that all samples for which 𝐷(𝑛) < 𝜏 are not taken into account in 
the generation of the tachogram.  
 
The Missed Beats Detection filter catches overlooked beats by comparing its corresponding 
RR intervals to the sum of its neighboring ones. The deviation tolerance 𝑡𝑜𝑙 can be adjusted 
accordingly such that: 

𝑅𝑅(𝑖)𝑒𝑟𝑟𝑜𝑟 = (𝑅𝑅(𝑖 − 1) + 𝑅𝑅(𝑖 + 1)) ± 𝑡𝑜𝑙   (5) 

 

The power of using such beat processing functions allows to remove as many incorrectly 
detected beats. The figure below shows a tachogram after steps 1-4 (left), and the tachogram 
after beat processing (right), which has interpolated data in red. It can be seen that many 
invalid spikes have been removed.   
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Step 6: Tachogram Generation 

This section controls how the beats are connected from one another, to go from the equation 
(2), which is the discrete computation of heart rate from the RR intervals, to continuous time.  

The interpolation is done either directly (straight line between each sample), or using a 
Smoothing Spline, which fits the points with respect to a smoothing coefficient p. The 
smoothing spline s minimizes [19]:  

𝑝 ∑ (𝑦𝑖 − 𝑠(𝑥𝑖))
2

+ (1 − 𝑝) ∫ (
𝑑2𝑠

𝑑𝑥2)
2

𝑑𝑥𝑖     (6) 

The smoothing coefficient p can be varied from 0 (high smoothing) to 1 (no smoothing).  

 

Tachogram Processing 

A simple Median Filter can be used to smoothen and filter out all remaining false beats. The 
filter is run of the entire signal and each point is replaced by the median of itself and its two 
neighbors. The default window size value of 3 allows to eliminate only the extrema (which 
in general correspond to incorrectly detected beats) from the final tachogram.  
 
Step 7-8: Evaluation & Output 
The function then computes the number of beats removed per filter, and generates the 
different outputs, including the final tachogram and the location of the R-peaks. The various 
outputs, including the evaluation measures can be seen in Tables 1 and 2 below. 
 
 

- 

 

 

 

 

 

Figure 13: Effect of beat processing parameters: the tachogram on the left is generated after steps 1-4.  

The tachogram on the right is after step 5, in which many beats deemed invalid have been interpolated.  
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Table 1: Evaluation measures of function 

Name Type Description 

totalNumBeats Int Total number of detected R-Peaks 

percentInvalid Double Percentage of beats that were determined invalid. 

splinesRSquare Double R-Square value if the spline smoothing method 
was chosen. Otherwise 0. 

numRemovedEnsemble Int Number of beats removed by the ensemble filter 

numRemovedMAD Int Number of beats removed by the MAD filter 

missedBeatsNum Int Number of missed beats removed 

  
 
 
Table 2: Main outputs (step 8)  of the full pipeline 

Name Type Description 

tachogram Double 
Array 

Series of RR intervals as a function of beat 
number. in samples (ms) 

r_locs Int 
Array 

Location of the R-peaks. 
Unit: Sample point corresponding to the R-Peak. 

heartRate Double 
Array 

Interpolation of the tachogram as a function of 
time. Unit: BPM? 

interpolatedFlag Boolean 
Array 

Boolean array of the same length as the heart rate 
array. Indicates which samples were interpolated 
where R-Peaks where determined invalid. 

evaluation Struct Evaluation measures. See details below. 

 
 
 

4.2 Graphical User Interface (GUI) 

We computed a graphical user interface in order to allow a simple visualization of the 
function and the effect of parameters on the output (Figure 14). The filter parameters and 
tachogram generation can be selected on the left column. The right column displays the 
electrocardiogram with flagged beats, and the corresponding tachograms with beats 
removed by each filter. 
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Figure 14: User Interface. The left column a) allows the selection of the ECG file and of the beat processing  parameters 

(Ensemble, MAD, Missed Beats Detection, and Median), as well as direct or smoothing spline generation of the tachogram.  

The right column b) displays the ECG signal with the R-Peaks detected (1st graph), the tachogram with invalid beats detected 

per filter (2nd graph), and the final tachogram with interpolated beats (3rd graph).   

 
A user’s guide is included in the Appendix, which explains each GUI section in more detail. 
 
 
 

 

 

 

 

 

 

5 Validation 
5.1 Validation on Physionet ECGs 

To validate our beat-extraction algorithm, we used a database from Physionet [20], a 
website holding large amounts of physiological signals, including electrocardiograms for 
which valid beats have formerly been marked by physicians.  
To validate on signals resembling as much as possible to our APEX ECGs, we ran our 
function on the picsdb, the preterm infants electrocardiogram database.  
The physionet data was processed and enhanced during its collection, allowing us to get 
extremely good results over hundreds of hours of recording.  
 

a)  b)  
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We ran the function on 5 different picsdb files and got the following results:  
 
Parameters:    Results: 
Ensemble function = 0.1   Total Beats:  803272  Sensitivity:   95.92% 
MAD window size = 20    TP (valid):  768820  P+ Predictivity:    99.91%  
Missed Beat Tolerance = 20%   FN (missed):  34452  Accuracy:    95.83%  
Median filter window size = 3   FP (extra):  600 

 
where Sensitivity (Se), positive predictivity (+P) and accuracy (Acc) were calculated using 
the following equations:  

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 × 100%     (7)  

    

+𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 × 100%    (8)  

    

𝐴𝑐𝑐 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 × 100%    (9) 

     

However, as the Physionet database is extremely reduced in noise, we made our Ensemble 
Function parameter loose (0.1) in order to avoid removing any valid data.  
 

5.2 Validation on APEX 

In order to ensure our beat processing parameters were adapted for the unprocessed APEX 
data, we visually assessed the effects of the parameters on the tachogram, as well as 
quantitavely with the heart rate variability metrics (see section 5.3).  
To decide on appropriate parameters, we ran our function on noisy ECGs, resulting in noisy 
tachograms with large numbers of unrealistic spikes, as well as clean electrocardiograms, 
for which all variations in the tachogram (bradycardia or tachycardia) represent real 
physiological data. It was expected that our function removes little to no beats in the clean 
electrocardiogram, and many falsely detected peaks in the noisy electrocardiogram. The 
chosen parameters were the following: 
 
Ensemble function = 0.2 
MAD window size = 20 
Missed Beat Tolerance = 25% 
Median filter window size = 3 
 
Testing on typical signals: 
 
A tachogram (“a5c37ce1d999”) showing both clean and noisy parts is shown in Figure 15 
below. Four main spikes in the tachogram are visible: at 1200s (a), 1750s (b), 2100s (c) and 
4000s (d). By zooming in, spikes a), b) and c) represent real bradycardias, as shown in the 
close-up figures, are expected to stay intact. Spike d) is noise from the ECG which does not 
represent real data, as can be seen from the flat line at 4020s, and should be removed. 
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Figure 15: ECG signal “a5c37ce1d999” with detected R-Peaks and generated tachogram after steps 1-4 (top 
graph).  The four bottom graphs are close-up electrocardiograms and corresponding tachograms of the four 
labeled spikes a), b), c) and d) of the top figure. Only spike d) should be removed by the beat processing function.  

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

a) b) 
c) 

d) 

a) b) 

c) 
d) 
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Figure 16: Tachogram after running the beat processing functions. Spikes a) b) and c) (left) are practically intact 

while spike d) (right)  is completely removed.  

The results are shown in Figure 16 below. Spikes a), b) and c) are still almost intact, 
although there are still a few beat removals. The parameters properly remove spike d) 
which should not be taken into account during the extraction of the filter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Testing on clean signals: 
 
Another example of our function parameters is shown below. The electrocardiogram chosen 
(“c1f6f1d2676e”) is clean, and we verified manually that the variations seen in the 
tachogram were real. It was thus expected that our function parameters were appropriate 
and did not remove noise. 
The third graph of Figure 17 has 3 red dots, meaning that only 3 beats were deemed incorrect 
from the function. We see from the GUI screenshot that the Ensemble Function and MAD 
function did not remove any beats, confirming that the chosen parameters were not too 
harsh. By checking visually for each beat on the ECG signal directly, we verified that the 3 
beats were indeed incorrectly detected. This shows that the parameters chosen are not too 
harsh for clean APEX data. 
 
Testing on noisy signals: 
Finally, we also tested our function on noisy signals to ensure that our parameters were not 
too loose and removed all noise. An example is shown in Figure 18, for signal 
“c2da36316597.”  
As expected, almost all noise is removed from the tachogram (Figure 19). Particularly noisy 
parts of the signal, as outlined by the red square, is not taken into account for the 
interpolation of the tachogram.  

a) b) c) 

d) 
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Figure 17: Clean electrocardiogram for which all main spikes represent real data. The beat processing function 

only removes 3 beats over the entire signal. The three removed beats a), b) and c) are correctly removed as shown 

from the three close-up graphs.  

 
Clean ECG (“c1f6f1d2676e”):  

 
 
 
 
 
 
 
 
 
 
 

 
 
 

a) b) 

c) 

a) 

b) 

c) 
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Figure 19: Noisy signal after beat processing functions and median filter applied (step 5-6): almost all spikes have been 

removed in noisy areas (left graph). The right graph is a close up of a particularly noisy part (red rectangular outline), 

which is successfully removed by the post-processing function.   

Figure 18: Example of a noisy electrocardiogram signal and tachogram (after steps 1-4 of our function).  

Noisy ECG (“c2da36316597”):  
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5.3 Effect of filtering parameters on Metrics 

Different parameters were selected in order to evaluate their effects on the HRV metrics: 
Ensemble Function (EF), MAD, Missed Beats (MB), Smoothing Spline (SS), and median filter 
(Med). Metrics were most sensible to variations in the Ensemble and MAD functions, in 
particular the SDNN and RMSDD in time domain. 
 
Table 3 shows the effect of the beat processing parameters when one is varied at a time for 
the signal showing both clean and noisy sections (“a5c37ce1d999”). It can be seen that 
changing the smoothing spline to direct, and adding the median filter have no effect on the 
metrics.  
 
Table 3: Effects of beat processing parameters (Ensemble Function (EF), MAD, Missed Beats (MB), Smoothing Spline (SS), and 

median filter (Med)) on HRV metrics for the ECG signal “a5c3ecg”. 

 

EF MAD MB SS Med mean SDNN NNx pNNx RMSSD SDNNi 

Parameter Parameter Parameter   (ms) (ms) (count) (%) (ms) (ms) 

x x x Yes x 407.6 25.9 53 0.5 30.3 48.9 
0.2 x x Yes x 407.1 18.8 41 0.4 15.4 48.9 
x 20 x Yes x 407.4 24 45 0.4 27.6 48.9 
x x 25 Yes x 407.4 24 45 0.3 27.6 48.9 
x x x No x 407.6 25.9 53 0.5 30.3 48.9 
x x x Yes 3 407.6 25.9 53 0.5 30.3 48.9 

 

 
In order to assess in more detail the effects of the Ensemble and MAD function parameters, 
we varied their values on the three signals used in the previous section (5.2).  The results are 
shown in Tables 4 (change in Ensemble) and 5 (change in MAD).  Recall that the smaller the 
MAD parameter is, the harsher the removal of beats (opposite to the Ensemble Function).  
 
Most metrics do not vary significantly with changing parameters, except for SDNNi which 
can be multiplied or divided by 2-3 with harsher parameters (see values in red). This let us 
to keep relatively loose parameters (MAD = 20 and EF = 0.2) to avoid removing too much 
valuable data.  
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Table 4: Change of time domain metrics with respect to the Ensemble Function on 3 different signals. The constant parameters 

are the following: MAD 20, MB 25, Smoothing Spline and Median 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5: Change of time domain metrics with respect to the MAD Function on 3 different signals. The constant parameters are 

the following: EF = 0.2, MB 25, Smoothing Spline and Median 3. 

HRV Variable MAD ibi mean SDNN NNx pNNx RMSSD SDNNi 

Subject Parameter (count) (ms) (ms) (count) (%) (ms) (ms) 

a5c37ce1d999 20 10626 407.2 15 28 0.3 7.7 48.9 
a5c37ce1d999 15 10626 407.2 14.8 27 0.3 7.6 48.9 
a5c37ce1d999 10 10614 407 14 20 0.2 7 48.8 

c1f6f1d2676e 20 10471 377.8 21.4 11 0.1 5.2 17 
c1f6f1d2676e 15 10471 377.8 21.3 9 0.1 5.1 16.9 
c1f6f1d2676e 10 10451 377.5 19.8 3 0 3.7 49.2 

c2da36316597 20 10008 380 22.9 22 0.2 9.3 51.5 
c2da36316597 15 10008 379.9 22.5 19 0.2 7.3 51.5 
c2da36316597 10 10006 380 22.3 15 0.1 6 51.5 

 

6  Heart Rate Variability Analysis Software (HRVAS) 

Heart Rate Variability Analysis Software (HRVAS) is a package allowing the computation of 
time domain, frequency domain, and nonlinear HRV metrics which we integrated directly 
with our beat-extraction toolbox. It was chosen for its robust design, open source availability 
and completeness. Developed by John T. Ramshur, PhD and is well documented [21] 
Built entirely in MATLAB, it is easily extendable and customizable. We added an export 
function in our algorithm to save results in the correct format for HRVAS. Having a GUI, 
shown in Figure 20, as well as a batch programmatic mode allows the entire pipeline to be 
used at various stages of development: from data exploration using the GUI to high volume 
processing using the command line. 
 
  

HRV Variable EF ibi mean SDNN NNx pNNx RMSSD SDNNi 

Subject Parameter (count) (ms) (ms) (count) (%) (ms) (ms) 

a5c37ce1d999 0.2 10627 407.2 15 28 0.3 7.7 48.9 

a5c37ce1d999 0.4 10615 407.2 14.9 25 0.2 7.6 48.9 

a5c37ce1d999 0.5 10600 407.2 14.9 25 0.2 7.6 10.7 

c1f6f1d2676e 0.2 10472 377.8 21.4 11 0.1 5.2 17 

c1f6f1d2676e 0.4 10469 377.8 21.4 9 0.1 4.7 16.9 

c1f6f1d2676e 0.5 10467 377.8 21.4 9 0.1 4.7 16.9 

c2da36316597 0.2 10008 380 22.9 22 0.2 9.3 51.5 

c2da36316597 0.4 9769 380.6 22.1 9 0.1 6.3 19.3 

c2da36316597 0.5 9596 381 21.8 4 0 5.9 18.9 
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Figure 20: HRVAS Software interface. 
 
 
 

7 Documentation and Software Package 

To ensure that the tools that we developed are useful and benefit the most people, the 
entire source code has been Open Sourced on github: 
https://github.com/arthurkuhn/hrvtoolkit  
 
A website has been set-up to host documentation and other relevant information: 
http://hrvtoolkit.com.  
 
Independent MATLAB modules were documented separately, and all documentation will 
be made online. 

  

https://github.com/arthurkuhn/hrvtoolkit
http://hrvtoolkit.com/
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8 Future Work 

Our algorithm works efficiently on a wide set of inputs, however, the filters still need to be 
adjusted depending on the signal. An important improvement would be to make the process 
entirely automatic. In our current algorithm, beats that are deemed noisy are completely 
removed from the following steps of the pipeline. Ideally, to be able to explore long-term 
trends, we would like to be able to interpolate these missing values before the next 
preprocessing steps.  
 
The next steps would be to find the correlation between the HRV metrics and the clinical 
outcome extubation, using machine learning methods. This would contribute to the APEX 
project to predict extubation readiness from different types of data, including 
electrocardiograms. 

9 Social and Environmental Impact 
9.1 Environmental Impact 

This is a software project and there are almost no non-renewable resources are used both 
during development and during the life of the application. However, this project has the 
potential to have a large environmental impact. Reducing extubation failure, as well as 
minimizing intubation time could reduce morbidity and hospitalization times. This would 
free up beds and resources for other patients.  
This also has the potential to reduce medical expenses. Stays in the NICU (Neonatal intensive 
cate unit) are extremely expensive. Currently, a day in the NICU can cost more than $10 000. 
This is not only an important burden for the families, but also for the healthcare system. The 
Total cost of medical care services due to preterm birth was estimated to be $16.9 billion in 
2005 [22]. These costs are especially high for extremely preterm infants. For babies born at 
24 weeks or before, median hospital costs are more than $200 000 for the duration of their 
stay. Between 25 and 28 weeks, median costs reach $120 000 [23]. Any reduction in these 
amounts could free up resources to be used elsewhere. 
 

9.2 Social Impact 

Evidently, the social impact of this project could be significant. The ability to correctly predict 
extubation time could limit the short and long-term damages caused by reintubations and 
prolonged MV, and therefore reduce associated morbidities and could in some cases, save 
lives. There will nonetheless still be risks associated to this project, as there are many, 
sometimes unpredictable clinical factors associated with extubation success. However, as 
the current extubation failure rate is 45%, and preliminary studies have shown encouraging 
results, we hope that our work will help improve the success rate. Since current practices 
are based on clinical judgment, a program taking into account large amounts of 
cardiorespiratory and clinical data and based on statistical measures could improve this 
outcome. This project is also beneficial for society as it contributes to research advancement 
in the clinical domain and is an example electrical and software engineering applied in the 
biomedical field. 



 

 

25 

10 Teamwork 

We are both taking a 3-credit course. We both participated in all steps of the process: 
literature review, implementation of algorithms, and reports. In the first semester Arthur 
fully implemented the Kota peak detection algorithm and the confidence level measurement 
and Clara implemented the pre and post-processing stages (noise detection algorithms, 
median and pattern matching filtering), and manually validated Kota. In the second 
semester, Arthur implemented the GUI, pipeline and test code and Clara performed the 
different types of validation and HRV metric analysis.  
 

11 Conclusion  

In conclusion, this year we have designed and built a fully functional pipeline to go from raw 
ECG recordings into fully analysed signals. This semester, we concentrated on integrating 
the heart rate variability analysis package, as well as validating the function on a wide range 
of signals. We also focused on documenting our progress and setting-up proper help 
resources so that future users of the package can get set-up quickly. Finally, we open-sourced 
all the code and set-up resources to facilitate future collaboration. We both learned a lot 
throughout this project. We learned about all the medical issues that preterm infants face 
and the difficulties associated to record cardiorespiratory data, as well as the composition of 
electrocardiograms. As this is a medical project, a lot of “human” features factor in, creating 
an additional dimension to the challenge, such as noisy ECG signals. Validation was very time 
consuming but allowed us to get a clear understanding of the benefits and limitations of our 
package. Overall, this was an extremely stimulating and enriching project. This package will 
be presented to the rest of the APEX research team to be used to evaluate how the heart rate 
variability metrics that we calculated correlate with extubation outcome. We hope that it will 
be useful, and that it will be used by the medical research community in the future.  
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Appendix  
 

Function parameters: 
Parameter Description Default Units 

n_sample_start Sample number where analysis will start 1 Sample number 

n_sample_end Sample number where the analysis will end end Sample number 

ensemble_filter_threshold Ensemble Filter Correlation Threshold Off  

ensemble_filter_window Ensemble filter window 200 Samples 

mad_filter_threshold Mad Filter Threshold Off  

missed_beats_tolerance_percent Tolerance in beat-to-beat variation Off Percent 

median_filter_window Median Filter Window Size Off Samples 

Interpolation Method (spline or 
linear) 

'Interpolation Method (spline or linear) spline String 

smoothing_spline_coef Smoothing Spline Coefficient 0.5 0 to 1 

eval_type Evaluation type (short, full, default none) Off String 

directory Directory where the file is located (if not on path) '' String 

 

 
GUI  User Manual (right column): 

 
 
 

ECG with detected beats: in red are 

those deemed invalid by the 

ensemble beat processing method 

The tachogram with beats deemed 

invalid by each processing function 

(different color for each) is 

displayed in this graph. 

Final tachogram: all beats deemed 

invalid have been interpolated (in 

red), either directly or from the 

smoothing spline function. 
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GUI  User Manual (left column): 
 

 

 

 
 

 

 

 

 

  

Select any .mat 

file 
The number of beats removed by each beat 

processing method is displayed in this column 

The user may type in any value ranging 

from 0-1 for minimum static correlation  

Window size for 

MAD  

Tolerance for missed beat detection 

Coefficient of determination R2 for smoothing spline 

displayed here 

Curve fitting coefficient (0-1) for smoothing spline 

The user may enter the window size for 

the median filter  

The percentage of invalid RR intervals over the 

whole ECG signal is displayed, along with the total 

number of detected beats  

The user can open the figures on the right in a new 

window, allowing more flexibility (to zoom in, 

compare signals, etc.) 

Once the user has selected his parameters, he can select run to apply changes.  

The IBI files with chosen parameters can be saved for HRV analysis.  

The full results can also be saved. 
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