


medFilter - Finds the outliers in the signal using a MAD filter
Uses a Median absolute deviation filter to detect outliers.
Inputs:
signal - The RR-interval data
validLocs - Boolean Array, 1 for valid peaks
tau - Parameter
Outputs:
validLocs - Boolean Array, 1 for valid peaks
Reference:
Thuraisingham, R. A. (2006). "Preprocessing RR interval time
series for heart rate variability analysis and estimates of
standard deviation of RR intervals."
Comput. Methods Programs Biomed.

0001 function outliers = medFilter( s, tau ) 0002 %medFilter - Finds the outliers in the signal using a MAD filter 0003 % Uses a Median absolute deviation filter to detect outliers. 0004 % 0005 % Inputs: 0006 % signal - The RR-interval data 0007 % validLocs - Boolean Array, 1 for valid peaks 0008 % tau - Parameter 0009 % 0010 % Outputs: 0011 % validLocs - Boolean Array, 1 for valid peaks 0012 % 0013 % Reference: 0014 % Thuraisingham, R. A. (2006). "Preprocessing RR interval time 0015 % series for heart rate variability analysis and estimates of 0016 % standard deviation of RR intervals." 0017 % Comput. Methods Programs Biomed. 0018 0019 sM=median(s); 0020 med=median(abs(s-sM)); 0021 D=abs(s-sM)./(1.483*med); 0022 outliers=D>tau; 0023 0024 0025 end 0026